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In-Space Transportation – Key Interfaces
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In-Space 
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Entry, 
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Landing

System/ 
Discipline 
Teams

Architecture/ 
Element Teams*

Lunar programs (Artemis, 
CLPS, Gateway, etc.)

M2M, MTAS, SMD 
Decadal Surveys, 

PSDS3, etc.

Power / 
Thermal 
Systems

Advanced 
Propulsion

Rend. & 
Capture

SIBWG, TDTs, Interfaces

AES
(NEAScout, Lunar Flashlight, 

etc.)

SETMO/
AETC/HECC

In-Situ 
Resource 
Utilization

Autonomy

OCE, NESC 
and SE

Propellant production, transfer, 
utilization, etc.

Center Reps
(MSFC, GRC, 

SSC, etc.

Sensors and 
Instruments 

Mission 
Design / 

Navigation

*NOTE: Interfaces illustrated are not all inclusive

CFM

Materials and 
Advanced 

Manufacturing



LEAD

Ensuring American 

global leadership in 

Space Technology

• Lunar 
Exploration 
building to 
Mars and new 
discoveries at 
extreme 
locations

• Robust 
national space 
technology 
engine to meet 
national needs

• U.S. economic 
growth for 
space industry

• Expanded 
commercial 
enterprise in 
space

THRUSTS OUTCOMES

Land
Expanded 

Access to 

Diverse Surface 

Destinations

Live
Sustainable 

Living and 

Working 

Farther from 

Earth

Explore
Transformative 

Missions and 

Discoveries

Go
Rapid, Safe, & 

Efficient Space 

Transportation 

Note: Multiple Capabilities are cross cutting and support multiple Thrusts.  Primary emphasis is shown

• Enable Human Earth-to-Mars Round Trip mission durations less than 
750 days.

• Enable rapid, low cost delivery of robotic payloads to Moon, Mars and 
beyond.

• Enable reusable, safe launch and in-space propulsion systems that 
reduce launch and operational costs/complexity and leverage potential 
destination based ISRU for propellants.

• Enable Lunar and Mars Global Access with ~20t payloads to support 
human missions.

• Land Payloads within 50 meters accuracy while also avoiding local 
landing hazards. 

• Conduct Human/Robotic Lunar Surface Missions in excess of 28 days 
without resupply.

• Conduct Human Mars Missions in excess of 800 days including transit 
without resupply.

• Provide greater than 75% of propellant and water/air consumables from 
local resources for Lunar and Mars missions.

• Enable Surface habitats that utilize local construction resources.
• Enable Intelligent robotic systems augmenting operations during crewed 

and un-crewed mission segments.

• Enable new discoveries at the Moon, Mars and other extreme locations.
• Enable new architectures that are more rapid, affordable, or capable 

than previously achievable.
• Enable new approaches for in-space servicing, assembly and 

manufacturing.
• Enable next generation space data processing with higher performance 

computing, communications and navigation in harsh deep space 
environments.

CAPABILITIES

• Human & Robotic Entry, Descent and 
Landing

• Precision Landing

• Advanced life support and human 
performance

• Advanced Materials, Structures and 
Manufacturing 

• Advanced Power Systems
• In-situ Propellant and Consumable 

Production
• Autonomous Systems and Robotics

• On-orbit Servicing, Assembly and 
Manufacturing

• Small Spacecraft Technologies
• Advanced Avionics
• Advanced Communications & 

Navigation

• Advanced Propulsion
• Cryogenic Fluid Management

STMD Strategic Framework
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• Enable Human Earth-to-Mars Round Trip mission durations 
less than 750 days.

• Enable rapid, low cost delivery of robotic payloads to Moon, 
Mars and beyond.

• Enable reusable, safe launch and in-space propulsion 
systems that reduce launch and operational 
costs/complexity and leverage potential destination based 
ISRU for propellants.

Solar Electric 

Propulsion

(SEP)

Rapid Analysis and 

Manufacturing 

Propulsion 

Technology

Cryogenic Fluid 

Management

Nuclear  

Propulsion 

Technologies

Thruster Advancement 

for Low-temperature 

Operations in Space

(TALOS)

Go
Rapid, Safe, & Efficient Space Transportation 

Green Propellant 

Infusion Mission

(GPIM)
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Surface Power

In-situ 

Resource 

Utilization

(ISRU)

Go, Land, Live and Explore
Sustainable Living and Working Farther from Earth

Note: Mid TRL and High TRL Technology  Development for Life Support and EVA suits are HEOMD Responsibility
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Orbit Servicing; 

Rendezvous

Cryogenic Fluid 

Management

Surface Power
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Utilization

(ISRU)

Resuable Cryo



Exploration – High Level Transport Element Options 
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NEP / Chem

Nuclear Thermal

SEP / Chem

Cryogenics



Science – Planetary (Traditional) 
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Planetary Science and Astrobiology 
Decadal Survey 2023-2032

Challenging Targets and Environments
➢ Flagship Solar Electric Propulsion
➢ Low Temperature Storable Propellants
➢ Mars Ascent Vehicle
➢ Radioisotope electric propulsion
➢ Aerocapture
➢ Etc.



Science – Planetary (Small Spacecraft) 

8High Delta-V missions: use electric propulsion

Low Delta-V missions: NEO fly-by, and/or rideshare direct to destination



Science – Planetary (Small Spacecraft) 

9High Delta-V missions: use electric propulsion

Low Delta-V missions: NEO fly-by, and/or rideshare direct to destination

Small Innovative Missions for Planetary Exploration (SIMPLEx-2)



Geocentric and/or SmallSat (Government and Commercial)

10

Courtesy of ESA



Cryogenic Fluid Management (CFM) - Focused
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GROWTH OF CRYOGENIC KNOWLEDGE AND EXPERIENCE BASE 
DEVELOPMENT, VALIDATION, AND EXCERCISE OF NUMERICAL MODELING 
TOOLS

Appendix H (2024) Human Landing System Sustainable Lunar Presence

Near Term Demos
(Flight Experiments)

Large Integrated 
Flight Demo

Nuclear Thermal
Propulsion

Upper Stages for SLS and
Commercial Launch Vehicles

Mars

Numerical Model Validation &
Foundational μg Modeling Experiments

Ground Development

• Cryocoolers (90k and 20K)
• Parabolic Chilldown
• Suborbital Transfer
• Liquefaction (CryoFILL)
• eCryo

ISRU Propellants

ISRU Propellants

CFM strategy and End User Applications



Cryogenic Fluid Management (CFM) - Focused

Human Landing System (HLS) Investments will impact CFM strategy

• On April 30, NASA selected three U.S. companies to design and develop human landing systems 
(HLS) for the agency’s Artemis program

• All Three companies have upper stages that are Cryo based and likely Cryo lander systems as well.

• Blue Origin of Kent, Washington, is developing the Integrated Lander Vehicle (ILV) – a three-
stage lander to be launched on its own New Glenn Rocket System and ULA Vulcan launch 
system. Cryo is LH2/LOX

• Dynetics of Huntsville, Alabama, is developing the Dynetics Human Landing System (DHLS) –
providing the ascent and descent capabilities that will launch on the ULA Vulcan 
launch system. Cryo is CH4/LOX

• SpaceX of Hawthorne, California, is developing the Starship – a fully integrated lander that 
will use the SpaceX Super Heavy rocket. Cryo is CH4/LOX
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Near Term Subscale Demonstrations to enable an integrated in-space demonstration

http://www.nasa.gov/artemis


Section 2: Architecture Technology & High Risk Development Gaps

Current CFM Technology Challenges
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Insulation Structural 
Heat

Pressure 
Control

Transfer

TransferStorage

Leak 
Prevention

Active Cooling
(Small scale only)

CFM is only as strong as the weakest link

Sensitive But Unclassified

• CFM is a system of several technologies acting together
• The least effective component will drive the performance of the entire system

• Can’t test one or two CFM technologies at a time, must have a complete system

• To flight test a “transfer” system, most of the “storage” elements must also be in-
place in order to have any cryo fluid left when time to perform the actual transfer

• Active cooling (at reasonable scale) is not ready for flight at this time
• Active cooling at 90 K could be applied to lander class vehicles, larger applications (NTP, ISRU, upper 

stages, depots) at 90 K and 20 K cryocoolers need further development.



Tracing CFM Technologies to Applications
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Nuclear 
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X X X X X

X X X X
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X

Line Chill / Tank Chill

Pump / Pressure Transfer

Automated Cryo – Couplers

Liquid Acquisition

Valves

Super – Insulation

Structural Heat Intercept

Anchored Modeling

Pressure Control

Active Cooling: Cryo Coolers

Active Cooling: Liquefaction

TRANSFER

STORAGE

Core Strategic Risk reduction Path to Enable Integrated Demonstration
Gather Flight data on transfer and storage experiments from subscale demos in micro-g

Initiate flight rated Crycooler design effort (20K and 90K)
Ground Development of Ancillary technologies
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Investment Phasing 



Summary

• In-Space Transportation (IST) has a wide range of 
critical technology gaps across multiple disciplines and 
Strategic Technology Plans.

• IST has heavily leveraged Small Business and Industry 
investments with multiple enabling technology 
infusions.

• We will continue to rely on SBIR, STTR and industry 
investments to close our near, mid and far-term 
capability gaps.

• Innovative solutions should be proposed with explicit 
quantified Key Performance Parameter (KPP) 
expectations relative to the known architectures and 
reference missions.

18


